冷弯薄壁构件屈曲模态力学准则的有限元验证
- 摘 要
-
张登祥1,李占杰2,B W Schafer2(1 长沙理工大学水利工程学院,长沙 410076;2 美国约翰霍普金斯大学土木工程系,巴尔的摩 21218)[摘要] 现有冷弯薄壁型钢设计规范中需要获知薄壁结构各个模态屈曲特性,如局部板件屈曲、畸变屈曲和整体屈曲。从工程设计需要出发,系统介绍约束有限元条分法的基础理论及进展,并着重阐述其在区分屈曲模态时的相关力学假设。对于由这些力学假设定义的模态是否正确,基于有限元静力分析从一个全新的角度验证其合理性。[关键词] 冷弯薄壁构件;约束有限元条分法;屈曲分析;有限元方法中图分类号:TU31,O343,TU33文献标识码:A文章编号:1002-848X(2012)10-0065-06Finite element verification of the mechanic criteria of cold-formed thin-walled -steel member’s buckling mode definitionsZhang Dengxiang1, Li Zhanjie2, B W Schafer2(1 College of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410076, China; 2 Department of Civil Engineering, Johns Hopkins University, Baltimore MD 21218, USA)Abstract: In current-cold-formed thin-walled steel design specifications, buckling information of all the three types, local-plate buckling, distortional buckling and global buckling (or Euler buckling), are desired. From the desire of practical design, the basic theory of constrained finite strip method (cFSM) was systematically introduced and new progress was presented. An emphasis had been put on the associated mechanic assumptions for defining the buckling modes. For these mechanic assumptions, a brand-new view in terms of the definition of buckling modes was illustrated via the static finite element analysis to verify its validity.Keywords: cold-formed thin-walled-steel member;constrained finite strip method;buckling analysis;finite element method通讯作者:李占杰,博士,Email: lizhanjie@jhu.edu。参考文献[1]YU W W. Cold-formed steel design[M]. NYC:Johns Wiley & Sons, Inc., 2000.[2]SCHAFER B W, PEKOZ T. Computational modeling of cold-formed steel: haracterizing geometric imperfections and residual stresses[J]. Journal of Constructional Steel Research, 1998, 47(3): 193-210.[3]MOEN C D, IGUSA T, SCHAFER B W. Prediction of residual stresses and strains in coldformed steel members[J]. Thin-Walled Structures, 2008, 46(11): 1274-1289.[4]AISI-S100-07 AISI specification for the design of cold-formed steel structural members[S]. Washington, D.C.: American Iron and Steel Institute,1996.[5]AS/NZS 4600 Cold-formed steel structures[S]. AS/NZS,1996.[6]AISI-S100-07 Appendix 1: Design of cold-formed steel structural members using Direct Strength Method supplement to the north American specification for the design of coldformed steel structures [S]. Washington, D.C.: American Iron and Steel Institute, 2004.[7]SCHAFER B W.Review: the direct strength method of cold-formed steel member design[J]. Journal of Constructional Steel Research, 2008,64(7-8):766-778.[8]CHEUNG Y K, THAM L G. The finite strip method[M]. Boca Raton: CRC Press, 1997.[9]HANCOCK G J. Local, distortional and lateral buckling of I beams[J]. Journal of the Structural Division, ASCE, 1978, 104(11):1787-1798.[10]AISI. Direct strength method design guide[M]. Washington D.C.:American Iron and Steel Institute, 2006.[11]SILVESTRE N, CAMOTIM D.First-order generalised beam theory for arbitrary orthotropic materials[J]. Thin-walled Structures,2002, 40(9):755-789.[12]SILVESTRE N, CAMOTIM D. Second-order generalised beam theory for arbitrary orthotropic materials[J]. Thin-walled Structures,2002, 40(9):791-820.[13]SCHAFER B W, D-NY S. Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods[C]//Eighteenth International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL, United States, 2006.[14]D-NY S, SCHAFER B W. Buckling mode decomposition of single-branched open crosssection members via finite strip method: derivation[J]. Thin-walled Structures, 2006, 44(5): 563-584.[15]D-NY S, SCHAFER B W. Buckling mode decomposition of single-branched open cross-section members via finite strip method: application and examples[J]. Thin-walled Structures,2006, 44(5):585-600.[16]D-NY S, SCHAFER B W. A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method[J]. Journal of Constructional Steel Research,2008, 64(1): 12-29.[17]D-NY S, SILVESTRE N, SCHAFER B W, et al. Buckling mode identification of thin-walled members: a comparison between the cFSM and GBT approaches[C]// Fifth International Conference on Coupled Instabilities in Metal Structures, Sydney, Australia, 2008.[18]LI Z, SCHAFER B W. FSM stability solutions for general boundary conditions and extension of cFSM[C]//The Twelfth International Conference on Civil, Structural and Environmental Engineering Computing, Funchal, Madeira, Portugal, 2009.