您现在的位置:建筑结构>> 期 刊>> 2012年>> 第02期>>正文内容
双曲冷却塔下部子午线形对结构性能的影响*
张军锋,葛耀君,赵林
摘 要

(同济大学土木工程防灾国家重点实验室,上海 200092)
[摘要]在不影响冷却塔冷却性能的前提下,对双曲冷却塔塔筒下部半径和下支柱斜率进行微调,并分析了其对结构动力特性、承载性能及稳定性的影响。研究表明,塔筒下部子午线形对结构的线性特征值屈曲分析结果影响甚微,下支柱斜率等于或略小于塔筒下缘斜率可以有效提高结构基频,提高其抗风性能。塔筒下部区域斜率的突然下降或持续快速下降均会使附近环向膜应力及环向位移发生突变,也因此可能使局部稳定无法满足要求。所以,在设计中应保证塔筒下部区域的子午向斜率与上部斜率一致缓慢下降,使应力分布连续平缓,同时又可在不增加壁厚的情况下满足局部稳定要求。
[关键词]双曲冷却塔;塔筒子午线形;动力特性;承载性能;局部稳定
中图分类号:TU33+2,TU271-1文献标识码:A文章编号:1002-848X(2012)02-0118-04
Effect of bottom meridian curve on the mechanics behavior of hyperboloidal cooling tower
Zhang Junfeng, Ge Yaojun, Zhao Lin(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
Abstract:Radius of the bottom shell and slope of the support columns were optimized without influencing on the cooling property of hyperboloidal cooling tower, and the effect on dynamic behavior, load-carrying properties and local buckling performance were analyzed. It’s shown that the meridian curve of bottom shell has little influence on the linear bifurcation buckling results, and the fundamental frequency can be improved if the slope of the support columns is equal or slightly less than the slope of the bottom shell’s edge. Abrupt or sustaining fast decline of the slope of bottom shell will cause abrupt changes on the latitude membrane stress and latitude displacement, and the local buckling may not be satisfied consequently. Therefore, the slope of the bottom shell should decline slowly according the adjacent shell, so the stress distribution will be continuous and the local buckling can be satisfied without any increase of the shell’s thickness.
Keywords:hyperboloidal cooling tower; meridian curve; dynamic behavior; load-carrying property; local buckling
*科技部重大科技项目(2008ZX06004-001)和国家自然科学基金项目(50978203)联合资助。
作者简介:张军锋,博士研究生,Email: brilliantshine@163.com
参考文献
[1]GB/T 50102—2003 工业循环水冷却设计规范[S]. 北京: 中国计划出版社,2003
[2]DL/T 5339—2006 火力发电厂水工设计规范[S]. 北京: 中国电力出版社,2006
[3]武际可. 大型冷却塔结构分析的回顾与展望[J]. 力学与实践,1996, 18(6):1-5
[4]NIEMANN H J. Wind effects on cooling-tower shells [J]. Journal of the Structural Division, 1980, 106(3): 643-661
[5]许林汕, 赵林, 葛耀君. 超大型冷却塔随机风振响应分析[J]. 振动与冲击, 2009, 28(4): 180-184,193
[6]DER T J,FIDLER R. A model study of the buckling behavior of hyperbolic shells[C]//Proceedings of the Institution of Civil Engineers, London, England, 1968, 41(1): 105-118
[7]MUNGAN I. Buckling of reinforced concrete cooling tower shells: BSS approach [J]. ACI Structural Journal, 1982, 79(5): 387-391
[8]张军锋, 赵林, 柯世堂, 等. 大型冷却塔双塔组合表面风压干扰效应研究[J]. 哈尔滨工业大学学报,2011, 43(4): 81-87
[9]陈卫兵. 双曲线冷却塔结构动力特性研究[D]. 武汉:武汉大学, 2005
[10]石昊. 初始几何缺陷对双曲线形冷却塔筒壁受力性能影响的研究[D]. 上海:同济大学, 2006
[11]柯世堂, 赵林, 葛耀君, 等. 开洞超大型排烟冷却塔风压分布及双孔道位置优化[J]. 建筑科学与工程学报, 2009, 26(2): 52-56
[12]HAMPE E. 冷却塔[M]. 胡贤章,译. 北京: 电力工业出版社, 1980
[13]VGB-Guideline: Structural design of cooling tower-technical guideline for the structural design, computation and execution of cooling towers (VGB-R 610Ue) [S]. Essen: BTR Bautechnik bei Kühltürmen, 2005
[14]BS 4485 Part 4-Code of practice for structural design and construction-water cooling towers [S]. London: British Standard Institution, 1996
[15]同济大学土木工程防灾国家重点实验室. 浙江国华宁海电厂特大型冷却塔结构风洞试验研究报告[R]. 2006

下载地址

    你还没注册?或者没有登录?这篇论文要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!