您现在的位置:建筑结构>> 期 刊>> 2011年>> 第11期>>正文内容
建筑风工程研究与应用的新进展
金新阳,陈凯,唐意,杨易
摘 要

[摘要] 近几年来,建筑风工程领域的研究取得了重大进展,成果不仅在我国许多标志性超高层建筑和大跨空间结构工程中得到应用,部分已经被吸纳到最新修订的建筑结构荷载规范中。在近地面风特性和基本风速方面,为反映大城市群的建设规模和建筑高度,C,D两类地貌的梯度高度将适当提高,在补充吸收最近大风气象资料的条件下,绘制了新的全国基本风压图;基于大量风洞试验研究,超高层建筑横风向风振、弯扭耦合风振分析及其等效风荷载的计算方法日臻完善和实用,大跨空间结构脉动风荷载非平稳和非高斯特性、等效静力风荷载确定方法的研究取得进展;以计算机数值模拟为主要手段的行人风环境、自然通风及舒适度相关的研究正在逐步展开,是今后风工程研究大有发展前景的方向。
[关键词] 风工程;风速剖面;基本风速;风振响应;建筑风环境
中图分类号:TU312.1 文献标识码: A文章编号:1002-848X(2011)11-0111-07
New progress of research and application of wind engineering for buildings
Jin Xinyang, Chen Kai, Tang Yi, Yang Yi(CABR Technology Co., Ltd., China Academy of Building Research, Beijing 100013, China)
Abstract: Great progresses have been gotten recently in the research of wind engineering for buildings which not only have been applied in some outstanding buildings, but also adopted in new version of Load code for design of building structures. In the aspect of characteristics and reference speed of wind research in near-ground field, the gradient height of wind speed for roughness type C and D shall be increased to reflect the scale and building height appearing in large city groups, and a new wind map has been drawn based on the statistics of renewed climate datum. Depending on a variety of wind tunnel test, the calculation methods for cross-wind and torsion wind-induced dynamic response and wind-resistance design in high-rise buildings have been mature and applicable, the non-stationary characteristics of wind pressure and prediction methods for equivalent static wind load on large-span spatial structures have got progress. Assessment of pedestrian level wind environment, natural ventilation and human comfort related study mainly by means of CFD simulation will be an important direction in wind engineering research.
Keywords: wind engineering; wind velocity profile; reference wind velocity; wind-induced vibration response; environment
作者简介:金新阳(1955-),男,研究员,博士生导师,研究方向:风工程与结构工程,Email:jinxinyang@cabrtech.com
参考文献
[1]PANOFSKY H A. The atmospheric boundary layer below 150 meters[C]∥Annual Review of Fluid Mechanics, 1974,6:147-177.
[2]DEAVES D M, HARRIS R I. A mathematical model of the structure of strong winds[R]. Construction Industry Research and Information Association, 1978.
[3]British Standard. BS6399 loading for buildings. Part 2: Code of practice for wind loads[S]. BSI, 2002.
[4]Australian/New Zealand Standard. Structural design actions. Part 2: Wind action[S]. 2002.
[5]European Standards. Eurocode 1: Actions on structures —General actions—Part 1-4 Wind actions[S]. 2004.
[6]GB50009—2001建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2006.
[7]ASCE Standard 7-05: Minimum design loads for buildings and other structures[S]. ASCE, 2006.
[8]Architectural Institute of Japan. Recommendations for loads on buildings[S]. 2005.
[9]LI Q S, ZHI L, HU F. Boundary layer wind structure from observations on a 325m tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010,98:818-832.
[10]IRWIN P A. Exposure categories and transitions for design wind loads[J]. Journal of Structural Engineering, 2006,132(11):1755-1763.
[11]COOK N J. The Deaves and Harris ABL model applied to heterogeneous terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997,66:197-214.
[12]WIERINGA J. Representative roughness parameters for homogeneous terrain[J]. Boundary Layer Meteorology, 1993,63:323-363.
[13]ARYA S P. Micrometeorology and atmospheric boundary layer[J]. Pure and Applied Geophysics, 2005,162:1721-1745.
[14]VERKAIK J W, HOLTSLAG A A. Wind profiles, momentum flux and roughness lengths at Cabauw revisited[J]. Boundary Layer Meteorology, 2007,122:701-719.
[15]TIELEMAN H W. Strong wind observations in the atmospheric surface layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96:41-77.
[16]DYER A J, BRADLEY E F. An alternative analysis of flux-gradient relationships at the 1976 ITCE[J]. Boundary Layer Meteorology. 1982, 22:3-19,
[17]POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003,422:279-283.
[18]胡尚瑜,宋丽莉,李秋胜. 近地边界层台风观测及湍流特征参数分析[J]. 建筑结构学报, 2011,32(4):1-8.
[19]史文海,李正农,张传雄. 温州地区近地强风特性实测研究[J]. 建筑结构学报, 2010,31(10):34-40.
[20]宋丽莉,毛慧琴,汤海燕,等. 广东沿海近地层大风特性的观测分析[J]. 热带气象学报,2004,20(6):731-736.
[21]徐阳阳,刘树华,胡非,等. 北京城市化发展对大气边界层特性的影响[J]. 大气科学,2009,33(4):859-867.
[22]陈凯,金新阳,钱基宏. 考虑地貌修正的基本风压计算方法研究[J]. 北京大学学报:自然科学版,2012,48(1).
[23]KAREEM A. Dynamic response of high-rise buildings to stochastic wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992(41-44):1101-1112.
[24]全涌,顾明. 高层建筑横风向风致响应及等效静力风荷载的分析方法[J]. 工程力学, 2006,23(9):84-88.
[25]梁枢果,夏法宝,邹良浩,等.矩形高层建筑横风向风振响应简化计算[J].建筑结构学报,2004(5):48-54.
[26]DAVENPORT. Gust loading factors[J]. Journal of the Structural Division, ASCE, 1967,93(ST3):11-34.
[27]DAVENPORT. The generalization and simplification of wind loads and implications for computational methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993(46-47):409-417.
[28]DAVENPORT. How can we simplify and generalize wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995(54-55):657-669.
[29]KAREE M A. Fluctuating wind loads on buildings[J]. Journal of the Engineering Mechanics Division, 1982,108:1086-1102.
[30]KWOK K C S, MELBOURNE W H. Wind-induced lock-in excitation of tall structures[J]. Journal of the Structural Division, 1981,107(ST1):57-72.
[31]SOLARI G. Mathematical model to predict 3-D wind loading on buildings[J]. Journal of Engineering Mechanics, 1985,111(2):254-275.
[32]MELBOURNE W H, PALMER T R. Acceleration and comfort criteria for buildings undergoing complex motions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992(4144):105-116.
[33]ISLAM M S, ELLINGWOOD B, COROTIS R B. Wind-induced response of structurally asymmetric high-rise buildings[J]. Journal of Structural Engineering, 1992,118:207-222.
[34]KIJEWSKI T, BROWN D, KAREEM A. Identification of dynamic properties of a tall building from full-scale response measurements[C]∥Eleventh International Conference on Wind Engineering. Lubbock, Texas, USA: 2003.
[35]DALGLEISH W A, COOPER K R, TEMPLIN J T. Comparison of model and full-scale accerlerations of a high-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983,13:217-228.
[36]金新阳,唐意. 温州东海广场超高层建筑三维风振分析[J]. 建筑结构学报, 2009,30(S1):149-153.
[37]ISO/FDIS 4354:2008. Wind actions on structures[S]. 2008.
[38]NBC 2005. Part 4 of Division B[S]. 2005.
[39]TAMURA Y, OHKUMA T, OKADA H, et al. Wind loading standards and design criteria in Japan[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,83:555-566.
[40]KUMAR K S, STATHOPOULOS T. Wind loads on low building roofs: A stochastic perspective[J]. Journal of Structural Engineering, 2000,126(8):944-956.
[41]BORRI C, MAJOWIECKI M, SPINELLI P. Wind response of a large tensile structure: the new roof of the Olympic Stadium in Rome[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992(41-44): 1435-1446.
[42]孙瑛,许楠,武岳.考虑特征湍流影响的体育场悬挑屋盖脉动风压谱模型[J].建筑结构学报,2010,31(10):24-33.
[43]沈国辉,孙炳楠,楼文娟. 大跨屋盖悬挑结构的风荷载分析[J]. 空气动力学学报, 2004,22(1):41-46.
[44]孙瑛,武岳,林志兴,等. 大跨度平屋盖表面的风压脉冲特性研究[J]. 工程力学, 2007,24(4):92-96.
[45]陈学锐,顾志福,李燕. 锥形涡诱导下建筑物顶面风荷载[J]. 力学学报, 2007,39(5):655-660.
[46]FU J Y, XIE Z N, LI Q S. Equivalent static wind loads on long-span roof structures[J]. Journal of Structural Engineering, 2008,134(7):1115-1128.
[47]沈世钊. 大跨空间结构理论研究和工程实践[J]. 中国工程科学, 2001,3(3):34-41.
[48]KASPERSKI M, NIEMANN H J. The LRC (load-response correlation) method: A general method of estimating unfavorable wind load distributions for linear and nonlinear structural behavior [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992,43(3):1753-1763.
[49]HOLMES J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics , 2002,90(2):91-109.
[50]谢壮宁,倪振华,石碧青. 大跨度屋盖结构的等效静风荷载[J]. 建筑结构学报, 2007,28(1):113-118.
[51]陈凯,符龙彪,金新阳,等. 大跨度空间结构的风振系数和等效静风荷载[C]∥第十五届全国结构风工程学术会议论文集, 北京:人民交通出版社,2011.
[52]KASUMURA A, TAMURA Y, NAKAMURA O. Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large span cantilevered roof[J].Journal of Wind Engineering and Industrial Aerodynamics, 2007,95(9-11):1145-1165.
[53]陈波,杨庆山,武岳. 大跨空间结构的多目标等效静风荷载分析方法[J]. 土木工程学报,2010,43(3):62-67.
[54]吴迪,武岳,张建胜. 大跨屋盖结构多目标等效静风荷载分析方法[J]. 建筑结构学报, 2011,32(4):17-23.
[55]钱基宏,陈凯. 基于荷载效应的结构抗风设计方法研究[C]∥现代大跨度空间的风工程研究与进展专题研讨会,兰州,2011.
[56]YOSHIE R. Workshop on regional harmonization of wind loading and wind environmental specifications[C]∥Asia-Pacific Economies(APEC-WW), Session 1 Pedestrian level wind, 2004.
[57]CERMARK J E. Wind-tunnel development and trends in applications to civil engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91:355-370.
[58]CHANG C. Workshop on regional harmonization of wind loading and wind environmental specifications[C]∥Asia-Pacific Economies(APEC-WW), Session 1 Pedestrian level wind, 2004.
[59]杨易,顾明,金新阳,等.风环境数值模拟中模拟植被的数值模型与应用[J].同济大学学报,2010,38(9):51-55.
[60]TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guideline for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96:1749-1761.
[61]YANG Y, GU M, CHEN S Q, et al. New inflow boundary conditions for modeling the neutral equilibrium atmospheric boundary layers in computational wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009,97(2):88-95.
[62]TAMURA T. Towards practical use of LES in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96:1451-1471.
[63]TOMINAGA Y, STATHOPOULOS T. CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011,99:340-348.
[64]LAWSON T V, PENWARDEN A D. The effects of wind on people in the vicinity of buildings[C]∥Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures, Heathrow, Cambridge University Press, 1975:605-622.
[65]HUNT J C R , POULTON E C, MUMFORD J C. The effects of wind on people: new criteria based on wind tunnel experiments[J]. Building Environ, 1976,11:15-28.
[66]MELBOURNE W H. Criteria for environmental wind conditions[J]. Journal of Wind Engineering and Industrial aerodynamics, 1978,3:241-249.
[67]MURAKAMI S, DEGUCHI K. New criteria for wind effects on pedestrians[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1981,7:289-309.
[68]MURAKAMI S, IWASA Y, MORIKAWA Y. Study on acceptable criteria for assessing wind environmental at ground level based on resident’s diaries[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986,24:1-18.
[69]SOLIGO M J, IRWIN P A, WILLIAMS C J, et al. A comprehensive assessment of pedestrian comfort including thermal effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,77&78:753-766.
[70]RATCLIFF M A, PETERKA J A. Comparison of pedestrian wind acceptability criteria[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990,36:791-800.

下载地址

    你还没注册?或者没有登录?这篇论文要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!