单、双向钢-混凝土组合楼盖对比分析及设计建议
- 摘 要
-
单、双向钢-混凝土组合楼盖对比分析及设计建议聂建国,卜凡民(清华大学土木工程系,结构工程与振动教育部重点实验室,北京 100084)[摘要]近年来双向钢-混凝土组合楼盖的应用日益广泛,但对其试验研究和理论分析较少,工程应用中对单、双向钢-混凝土组合楼盖力学特性的差异研究不多,对两种楼盖形式的经济性和适用范围比较模糊。采用非线性有限单元法计算分析了单、双向钢-混凝土组合楼盖静、动力特性,分析结果表明:双向组合楼盖通常具有更高的刚度和承载力,但随着长宽比增大,空间作用降低,单位面积用钢量增加;综合考虑组合楼盖力学特性、经济性以及施工等因素,建议长宽比小于1.3时采用双向布置。[关键词]钢-混凝土组合楼盖;非线性有限单元法;力学特性;经济性中图分类号:TU398.7文献标识码:A文章编号:1002-848X(2011)01-0001-05Comparative analysis and design suggestion of one-way and two-way steel-concrete composite floorNie Jianguo, Bu Fanmin(Key Laboratory of Structural Engineering and Vibration of China Education Ministry, Department of Civil Engineering,Tsinghua University, Beijing 100084, China)Abstract:Two-way steel-concrete composite floors are widely used in recent years, but experimental study and theoretical analysis are inadequate. The differences between one-way and two-way steel-concrete composite floors are rarely studied in engineering designs, the economical efficiency and scope of application are unclear. A nonlinear finite element analysis method was employed to give comparisons with static and dynamic characteristics between one-way and two-way steel-concrete composite floor. The results show that two-way steel-concrete composite floor has higher stiffness and bearing capacity than one-way steel-concrete composite floor, but the advantages decrease with aspect ratio increasing. On the basis of comprehensive consideration of mechanical characteristics, economical efficiency and construction factors, it is recommended to use two-way steel-concrete composite floor when aspect ratio is less than 1.3.Keywords:steel-concrete composite floor; nonlinear finite element analysis method; mechanical characteristics; economical efficiency*国家自然科学基金重点资助项目(50438020)。作者简介:聂建国,博士,教授,博士生导师,长江学者特聘教授,Email:niejg@mail.tsinghua.edu.cn参考文献[1]温凌燕. 双向钢-混凝土组合梁板体系的试验研究与理论分析[D]. 北京: 清华大学, 2007.[2]MARGUERRE K. Uber die beanspruchung von plattentragern[J]. Der Stahlbau, 1952(8):129-132.[3]KENNEDY J B, GRACE N F. Load distribution in continuous composite bridges[J]. Can. J. Civ. Eng., 1983(10):384-395.[4]HEINS C P, KUO JOHN T C. Ultimate live load distribution factor for bridges[C]//Proceedings of the American Society of Civil Engineers, 1975, 101(ST7):1481-1497.[5]BEAL D B. Load capacity of concrete bridge decks[J]. J Struct. Div., 1982, 108(4):814-832.[6]CAO L C, SHING P B. Simplified analysis method for slab-on-girder highway bridge decks[J]. J. Structural Engineering, 1999, 125(1):49-59.[7]田春雨. 钢-混凝土组合梁板体系的试验研究与理论分析[D]. 北京: 清华大学, 2005.[8]SAWKO F, SAHA G P. Ultimate load analysis of bridge decks[J]. Building Science Journal, 1967(2):223-237.[9]聂建国,刘明,叶列平. 钢-混凝土组合结构[M]. 北京:中国建筑工业出版社,2005.[10]QINGQUAN LIANG, BRIAN UY, MARK A BRADFORD, et al. Strength analysis of steel-concrete composite beams in combined bending and shear[J]. Journal of Structural Engineering, 2005, 131(10):1593-1600.[11]聂建国, 唐亮. 密实截面组合梁的竖向抗剪强度I:受正弯矩作用的组合梁[J]. 土木工程学报, 2008, 41(3):7-14.[12]聂建国,卜凡民,温凌燕. 双向钢-混凝土组合楼盖非线性有限元分析及简化分析方法[J]. 哈尔滨工业大学学报,2009(41):73-78.[13]刘晶波, 杜修力. 结构动力学[M]. 北京:机械工业出版社,2005.[14]ALEKSANDAR PAVIC, PAUL REYNOLDS, PETER WALDRON,et al. Dynamic modelling of post-tensioned concrete floors using finite element analysis[J]. Finite Elements in Analysis and Design, 2001(37) :305-323.[15]ALEKSANDAR PAVIC, PAUL REYNOLDS. Vibration serviceability of long-span concrete building floors. Part 1: Review of background information[J]. The Shock and Vibration Digest, 2002(3):191-211.[16]丁圣果,郝方,丁婷,等. 混凝土现浇肋形楼盖的动力响应研究[J]. 建筑科学,2003(3):4-8.[17]陈宇. 步行荷载激励下大跨度人行桥的振动研究和减振研究[D]. 北京: 清华大学, 2007.