您现在的位置:建筑结构>> 期 刊>> 2010年>> 第10期>>正文内容
索穹顶结构整体提升张拉逆向模拟分析施工全过程研究
张丽梅1,梁小勇1,陈务军2,杜守军1
摘 要
(1 河北科技大学建筑工程学院,石家庄 050018; 2 上海交通大学空间结构研究中心, 上海 200030)
[摘要]采用非线性有限元法建立了索穹顶逆向施工全过程分析方法,通过改变主动索和辅助索的索长来实现索穹顶的整体逆向提升。采用索杆梁模型模拟索穹顶,主动索和辅助索为2节点索单元,被动索为5节点索单元,桅杆为杆单元,中央环梁为梁单元。索长改变通过施加温度荷载实现,整个分析模拟了结构从理想平衡状态到中央环梁放至地面的施工全过程。采用该方法可使所有构件在地面组装完成后整体逆向提升,避免了边张拉、边安装,节省时间,同时避免了模拟分析过程拓扑的不断变化。
[关键词]索穹顶; 逆向模拟分析; 整体提升
Simulation analysis of whole inverse lifting and stretching process for integral cable dome structures
Zhang Limei1, Liang Xiaoyong1, Chen Wujun2, Du Shoujun1(1 Architecture and Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;2 Space Structures Research Center, Shanghai Jiaotong University, Shanghai 200030, China)
Abstract:A simulation method of integral inverse lifting and stretching process for the cable dome was established based on nonlinear finite element method. The integral inverse lifting process of the cable dome was realized through changing the length of the positive constant force cables and the subsidiary cables. The cable-strut-beam model was used to simulate the cable dome, and the positive constant force cables and the subsidiary cables, the passive cables, the mast, the hub were respectively simulated with the two-node curved element, the five-node isoparametric element, the strut element and the beam element. In the integral inverse lifting process, the integral cable dome moved from the final equilibrium state to the hub reaching ground, and the temperature action can simulate the variations of the cable length. All the structural members of the cable dome were assembled on the floor, and this can prevent structural assemblage in the air and spare construction time. At the same time, the changes of the structural topological relation can be avoided.
Keywords:cable dome; inverse simulation analysis; integral lifting
国家自然科学基金资助项目(50878128),河北省科技支撑计划项目(092151291),河北科技大学博士基金(QD200940)。
作者简介:张丽梅,博士,副教授,Email:zhanglimei@hebust.edu.cn。
参考文献
[1] 陈务军, 关富玲. 索杆可展开结构体系分析[J]. 空间结构, 1997, 3(4): 43-48.
[2] 罗尧治, 董石麟. 索杆张力结构初始预应力分布计算[J]. 建筑结构学报, 2000, 21(5): 59-64.
[3] 袁行飞, 董石麟. 索穹顶体系施工控制反分析[J]. 建筑结构学报, 2001, 22(2): 75-79.
[4] 沈祖炎, 张立新. 基于非线性有限元的索穹顶施工模拟分析[J]. 计算力学学报, 2002, 19(4): 466-471.
[5] 张志宏, 董石麟, 王文杰. 索杆张拉结构的设计和施工全过程分析[J]. 空间结构, 2003, 9(2): 20-24.
[6] DENG H, JIANG Q F, KWAN A S K. Shaping finding of incomplete cable-strut assemblies containing slack and prestressed elements[J]. Computers & Structures, 2005(83): 1769-1779.
[7] 伍晓顺. 索杆张力结构的施工成型和平面连杆机构的运动形态分析[D]. 杭州: 浙江大学, 2006.
[8] ESTRADA G G, BUNGARTZ H J, MOHRDIECK C. Numerical form-finding of tensegrity structures[J]. International Journal of Solids and Structures, 2006,43: 6855-6866.
[9] 张丽梅. 非完全对称Geiger索穹顶结构特征与分析理论研究[D]. 上海: 上海交通大学, 2008.
[10] 唐建民, 卓家寿. 张拉结构非线性分析两节点曲线单元有限元[J]. 力学学报, 1999, 31(5): 633-640.
[11] 唐建民, 董明, 钱若军. 张拉结构非线性分析的五节点等参单元[J]. 计算力学学报, 1997, 14(1): 109-113.
[12] 张立新. 索穹顶体系成形关键问题和风致振动[D]. 上海: 同济大学, 2001.
下载地址

    你还没注册?或者没有登录?这篇论文要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!