高强钢薄壁箱形截面梁稳定性研究
- 摘 要
-
(1 解放军理工大学工程兵工程学院,南京 210007; 2 总装备部工程兵科研二所,北京 100093)[摘要]基于薄板的弹塑性大挠度有限元理论和弧长法,综合考虑了各种缺陷的影响,分别研究了梁的长细比、翼缘宽厚比和截面边长比对梁的稳定性的影响。最后在考虑了高强钢薄壁箱形截面梁的局部和整体的相关屈曲的基础上,提出了以翼缘宽厚比和截面边长比为参数的高强钢薄壁箱形截面梁的极限承载能力计算公式,并证实了公式的有效性。为有关高强度薄壁箱形截面梁的稳定性设计提供参考。[关键词]箱形梁;稳定系数;高强钢;薄壁箱形截面;相关屈曲Stability study on thin-walled box-section beam of high-strength steelGao Lei1, Sun Hongcai2, Xu Guanyao2, Qi Liang1(1 Engineering Institute of Engineering Corps, PLAUST, Nanjing 210007,China;2 No.2 Institute of Engineer Corps, General Equipment Headquarters, Beijing 100093, China)Abstract:Basing on elasto-plasticity large deflection finite element theory of the thin-walled steel plate, all kinds of imperfections were considered. The parameters that included the slenderness ratio, the width-thickness ratio of flange and the section side ratio were studied. Considering the relative buckling of the local and overall of the beam, the ultimate load-carrying calculation expression is put forward, which takes the width-thickness ratio of flange and the section side ratio as the parameters. The effectiveness of the expression is verified. The results can provide reference for the design of the thin-walled box-section beam of high-strength steel.Keywords:box beam; stability factor; thin-walled box-section beam; high-strength steel; relative buckling作者简介:高磊(1981-),博士研究生,Email:glei99-2001@163.com。参考文献[1]苟明康,陶莉.σs≥700MPa的高强钢在移动桥梁装备中的应用[J].钢结构,2002,17(5):6-8.[2]刘涛. 箱形截面构件相关稳定承载能力及滞回性能研究[D].北京:清华大学,2005.[3]陈骥. 钢结构稳定理论与设计[M]. 北京: 科学出版社,2001:351-354.[4]李耕俭. 对钢构件中残余应力的探讨[J].西安公路交通大学学报,1999,19(3):63-65.[5]ANTONIO F.MATENS,JOEL A WITZ. A parameter steudy of the post-buckling behaviour of steel plate[J].Engineering Structure,2001,23(2):172-185.[6]张中权. 冷弯薄壁型钢轴心受压构件稳定性的试验研究[C]//钢结构研究论文报告选集(第一册).北京:全国钢结构标准技术委员会,1982: 152-191.[7]沈祖炎,张其林. 受压方管钢柱的屈曲后极限承载力[J]. 土木工程学报,1991,24(3): 15-26.[8]张智星. Matlab程序设计与应用[M].北京: 清华大学出版社, 2001:221-229.