西安东航维修基地新机库钢屋盖结构整体提升若干关键技术研究*
- 摘 要
-
(1 西安建筑科技大学土木工程学院,西安 710055;2 陕西建工集团机械施工有限公司, 西安 710043;3 中国建筑西北设计研究院,西安 710018)[摘要]西安东航维修基地新机库钢屋盖采用正交斜放焊接球空间网架体系。通过有限元分析,对提升点的设置和提升过程进行研究,确定了提升点位移差的限值,并对提升支架、网架辅助提升点、门头单元提升点以及混凝土柱的稳定性进行分析,保证了提升过程的安全。此外,考虑了替换提升超限杆件对结构的影响。研究表明:按照方案1的方法设置(在东西侧奇数柱处设置)提升点是合理的;提升点水平弹性刚度的取值仅和屋盖自重以及提升钢绞线长度有关;多质点有限元计算模型更加合理,结构在同步提升状态下受力和变形均满足规范要求,整个提升过程安全可靠;提升点位移差的警戒限值为15mm;提升支架、网架辅助提升点、门头单元提升点在提升过程中安全可靠;混凝土立柱提升平面内的稳定性可以通过在柱外侧施加预拉力来实现,增设柱间支撑则可以保证提升平面外的稳定性;替换超限杆件对结构安全提升效果明显,而且对设计状态下的整体结构影响较小,是切实可行的。[关键词]整体提升; 提升点; 多质点; 位移差限值; 超限杆件中图分类号:TU337 文献标识码:A 文章编号:1002-848X(2015)05-0054-05Research on several key technologies for integral lifting of new hangar steel roof for China Eastern Airline Repair Base in Xi’anTian Limin1, Hao Jiping1, Li Cunliang2, Wang Yuan3, Zheng Jiang1(1 School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, China; 2 Shaanxi Construction Engineering Group Construction Machinery Company, Xi′an 710043, China; 3 Northwestern Architectural Design Institutes Company, Xi′an 710018, China)Abstract: The new hangar steel roof for China Eastern Airline Repair Base in Xi′an adopts the orthogonal diagonal welded spherical grid structure. The position of lifting points was analyzed as well as lifting process by finite element method, and the limited value of displacement difference was determined. The stabilities of lifting trestles, grid auxiliary lifting points, door head unit lifting points and concrete columns were researched to ensure the safety in lifting process. Moreover, the influence of substitute for out-of-code members was considered. The analytical results show that the first scheme is reasonable in set of positions (odd columns at east and west sides) of lifting points. The horizontal elastic stiffness of lifting points just relates to self-weight and length of steel stranded wire. The multi-particle finite element model is more reasonable and the structure in lifting process is safe. It is believed that the process of lifting is safe and the deformation and stress under the state of tentative lifting can meet the requirements. From the analysis, the limited value of displacement difference is 15mm and the lifting trestles, grid auxiliary lifting points, door head unit lifting points and concrete columns are reliable. To enhance the stability of concrete column in the plane, applying pre-stress on the lateral side of columns is suitable, and adding braces between columns can ensure the stability out of plane. Replacing out-of-code members, which can promote the structure safety obviously, has little effect on the overall structure under the design conditions and is feasible.Keywords: integral lifting; lifting point; multi-particle; limited value of displacement difference; out-of-code member*国家自然科学基金项目(51408623),建筑安全与环境国家重点实验室开放课题基金项目(BSBE2014-04),陕西省教育厅专项科研项目(14JK1400),西安建筑科技大学青年科技基金项目(QN1411),西安建筑科技大学钢结构创新团队资助计划。作者简介:田黎敏,博士,讲师,一级注册结构工程师,Email:tianlimin701@163.com。参考文献[1]田黎敏,郝际平,李存良,等. 大跨度钢屋盖结构整体提升施工过程力学模拟分析[J]. 建筑结构学报,2013,34(11):33-39.[2]郭彦林,缪友武,娄俊杰,等. 澳门综合体育馆主桁架整体提升及提升塔架分析[J]. 建筑结构学报,2005,26(1):17-24.[3]郑七振,鲍永亮,彭斌,等. 上海港国客中心钢桁架整体提升施工仿真分析[J]. 工程力学, 2010,27(11):82-87.[4]乌建中,卞永明,徐铭谦. 东方明珠广播电视塔钢天线桅杆同步整体提升[J]. 同济大学学报:自然科学版,1996,24(1):44-49.[5]刘树屯,关忆卢. 首都机场306×90m飞机库屋盖设计和施工[J]. 建筑结构学报,1997,18(3):47-57.[6]罗尧治,胡宁,沈雁彬,等. 网壳结构“折叠展开式”计算机同步控制整体提升施工技术[J]. 建筑钢结构进展,2005,7(4):27-32.[7]张丽梅,梁小勇,陈务军,等. 索穹顶结构整体提升张拉逆向模拟分析施工全过程研究[J]. 建筑结构,2010,40(10):74-77.[8]鲍广鉴,王宏,孙大军,等. 大面积钢屋盖多吊点非对称整体提升技术[J]. 施工技术,2004,33(5):10-12.[9]郑江,郝际平,王宏,等. 大跨屋盖多点整体提升过程的力学形体研究[J]. 建筑结构,2009,39(1):83-87.[10]曾令权,郭正兴,罗斌,等. 潮汕机场航站楼钢屋盖整体提升技术[J]. 施工技术, 2011, 40(1): 70-72.