您现在的位置:建筑结构>> 期 刊>> 2014年>> 增刊S1>>正文内容
基于人工神经网络的混凝土长期强度预测方法*
杨晓明,李富斋,时 丹
摘 要

(辽宁工程技术大学建筑工程学院,阜新123000

 

 

[摘要] 近年来在役土木工程结构的安全性越来越受到重视,而混凝土材料的长期强度在土木工程结构的安全性及耐久性评估中扮演中重要角色。在土木工程结构的长期服役中,混凝土的强度会慢慢下降。准确地预测出混凝土材料在长期使用过程的强度退化对于正确评估结构安全性有着重要的意义。影响混凝土材料长期强度的主要因素包括环境类别、龄期、气候条件、水灰比、胶凝材料用量等等。本文选取具有强大模式识别能力的人工神经网络工具进行混凝土长期强度的预测研究。首先以混凝土龄期、结构所处环境类别、水胶比以及粉煤灰用量作为神经网络输入,以混凝土长期强度作为网络输出建立三层BP神经网络,之后用试验及公开文献中的混凝土实测强度数据进行网络训练及测试。测试结果表明,经过训练的人工神经网络能够准确地预测混凝土材料的长期强度,其误差控制在7%以内,可以满足工程的需要。

 

[关键词] 混凝土;长期强度;人工神经网络;预测

 

中图分类号TU375        文献标识码A         文章编号1002-848X()

 

*国家自然科学基金资助(51008148)。

 

作者简介:杨晓明,博士,副教授,硕士生导师,主要从事结构损伤识别及耐久性研究,Emailxiao_m_y@163.com

 

 

Prediction of long-term strength of concrete based on artificial neural network

Yang Xiaoming, Li Fuzhai, Shi Dan

(College of Civil Engineering and Architecture, Liaoning Technical University, Fuxin 123000, China )

 

Abstract: Recently, the safety of existing civil engineering structures attracts more and more attention. The long-term strength of concrete plays a key role during the assessment of safety and durability for civil engineering structures. The strength of concrete will gradually decrease during the service of civil engineering structures. It is significant to accurately predict the strength deterioration of concrete for correctly evaluating the safety of structures. The factors affecting the long-term strength of concrete include environment type, age, climate, water cement ratio, amount of cementing material and so on. In this paper, artificial neural network with powerful mapping ability has been selected to predict the long-term strength of concrete. First, there-layer BP neural network with age, type of environment, water cement ratio, amount of fly ash as input and long-term strength as output was built. Then, the neural network was trained by the samples measured in real structures and the well-trained neural network was test. From the test results, the trained neural network can accurately predict the long-term strength of concrete with the error less then 7%.

 

Keywords: concrete; long-term strength; artificial neural network; prediction

 

     

[1] 欧进萍. 重大工程结构智能传感网络与健康监测系统的研究与应用[J]. 中国科学基金,200519(1)8-12.

[2] 潘洪科边亚东杨林德. 钢筋混凝土结构基于耐久性劣化度的可靠性分析[J]. 建筑结构学报,201132(1)105-109.

[3] 程云虹刘斌. 混凝土结构耐久性研究现状及趋势[J]. 东北大学学报,200324(6)600-605.

[4] 陈剑毅胡明玉肖烨,等. 复杂环境下矿物掺合料混凝土的耐久性研究[J]. 硅酸盐通报,201130(3)639-644.

[5] 张云清余红发王甲春. 钢筋混凝土构件的抗盐冻性能研究[J]. 硅酸盐通报,201029(2)345-351.

[6] 蒋思晨李晓丽张鹏远. 不同粉煤灰掺量高强混合骨料混凝土力学性能及本构关系试验研究[J]. 硅酸盐通报,201130(5)989-994.

[7] OKAN KARAHAN, HARUN TANYILDIZI, CENGIZ D ATIS. An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash [J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2008, 9(11): 1514-1523.

[8] 聂法智,王天柱,李丽霞. 混凝土后期强度评定的研究及应用[J]. 粉煤灰综合利用, 2008(1)40-42.

[9] 苏峥. 掺粉煤灰C60泵送混凝土的配制及应用[J]. 混凝土,1996(2)31-36.

 

[10] 赵胜利,刘燕. 基于RBF网络的商品混凝土强度预测分析[J]. 计算机工程,200531(18)36-37.

下载地址

    你还没注册?或者没有登录?这篇论文要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!