- 摘 要
-
(1 广州大学土木工程学院,广州 510006;2 华南理工大学土木工程学院,广州 510642;3华南理工大学亚热带建筑科学国家重点实验室,广州 510640;4 广州珠江外资建筑设计院有限公司,广州,510060)
[摘要] 框支剪力墙结构设计方案越来越普遍,但震害调查表明由于结构竖向刚度的不连续导致框支剪力墙结构容易在转换层附近发生严重破坏。通过采用具有延性好、承载力大等优点的钢-混凝土组合转换构件,可提高框支剪力墙结构的抗震性能。以某超限工程为背景,基于增量动力分析结果对结构进行地震易损性分析,建立地震动强度与结构失效概率之间的关系,评估结构超越各种极限破坏状态的概率。分析结果表明:在小震作用下结构保持基本完好,并未出现损伤;中震作用下结构产生轻度损伤,损伤仍处于可控范围;罕遇地震作用下结构发生严重破坏的概率为5.24%,结构抗震能力储备充足,能保障生命安全。
[关键词] 框支剪力墙;易损性分析;增量动力分析;抗震性能;
中图分类号:TU352.1 文献标识码:A 文章编号:14S1048
*国家自然科学基金青年科学基金(51108104),广东省自然科学基金(S2012010010074),市属高校“羊城学者”(12A001D)科研项目及国家留学基金资助。
作者简介:黄照棉,硕士研究生,Email:hzmian2014@163.com。
Seismic fragility analysis of SRC frame-supported shear wall structure
Huang Zhaomian1 , Wu Yi1 , Yang Chun2,3 , He Mingji4 , Pan Jianming4 , Zhang Chunmei1
(1 School of Civil Engineering of Guangzhou University,Guangzhou510006,China; 2 School of Civil Engineering and Transportation South China University of Technology, Guangzhou 510642, China; 3 State Key Laboratory of Subtropical Building Science ,South China University of Technology, Guangzhou 510640, China;4 Guangzhou Pearl River Foreign Investment Architectural Designing Institute Co., Ltd.,Guangzhou 510060,China)
Abstract: The frame-supported shear wall structure was more and more widely used, but seismic damage investigation indicated that due to discontinuity of vertical rigidity, the nearby transfer story of frame-supported shear wall structure was severely damage. The adoption of steel-concrete composite transfer component with the advantage of good ductility and bearing capacity could improve the seismic performance of the frame-supported shear wall structure. The seismic fragility analysis based on an overrun practical engineering structure was carried out by adopting the incremental dynamic analysis method, and then the relationship between structure failure probability and ground motion intensity parameters were established. Results show that under frequent earthquake, the structure was in good condition and basically undamaged; under moderate earthquake, mild damages could be found in the structure which was still in the controllable range; under rare earthquake, the failure probability of serious damage was 5.24% ,which mean the structure was with sufficient anti-seismic capacity reserved.
Keywords: frame-supported shear wall;seismic fragility analysis;incremental dynamic analysis;seismic performance
参 考 文 献
[1] 徐培福,王翠坤,肖从真. 剪力墙竖向不连续结构的震害与抗震设计概念[J]. 建筑结构学报,2004,25(5):1-9.
[2] 刘建伟. 框支剪力墙结构合理破坏机制及控制措施研究[D]. 重庆:重庆大学土,2011.
[3] MAHIN S A,BERTRO V V,CHOPRA A K,et al. Response of the olive view hospital main building during the San Fernando earthquake[R].Earthquake Engineering Research Center,University of California,1976.
[4] 李国强,崔大光,李一松. 型钢混凝土梁柱框支剪力墙结构抗震性能试验研究[J]. 地震工程与工程振动,2006,26(2):80-87.
[5] 傅传国,梁书亭,马辉.钢骨混凝土梁式转换层结构抗震性能试验研究[J]. 建筑结构,2000,30(4):61-64.
[6] 戴国亮,蒋永生,傅传国等.高层型钢混凝土底部大空间转换层结构性能研究[J]. 土木工程学报,2003,36(4):24-32.
[7] 崔大光.型钢混凝土梁柱框支剪力墙抗震性能研究[D].上海:同济大学,2006.
[8] SINGHAL A,KIREMIDJIAN A S. Method for probabilistic evaluation of seismic structural damage[J]. Journal of Structural Engineering,1996,122(12):1459-1467.
[9] Shinozuka M, Feng M Q, Lee J et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics, 2000,126(12):1224-1231.
[10] CORNELL C A,JALAYER F, HAMBURGER R O. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering,2002,128(4):526-532.
[11] 吕大刚. 结构抗震可靠度二种简化解析表达式的一致性证明[J]. 地震工程与工程振动,2009,29(5): 59-65.
[12] HAZUS99 User’s Manual[S]. Washington D C:Federal Emergency Management Agency,1999.
[13] 潘建明. 带型钢混凝土转换层框支剪力墙结构抗震性能研究[D].广州:华南理工大学,2013.
[14] Computers & Structures Inc. PERFORM-3D components and elements [M]. Berkeley,CA,2006.
[15] MANDER J B, PRIESTLEY M J N,PARK R. Thoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826.
[16] 钟善桐. 钢管混凝土统一理论研究与应用[M].北京:清华大学出版社,2006.
[17] ALVES S W, NOBLE C R. Experimental validation of LLNL finite element codes for nonlinear seismic simulations[R]. Lawrence Livermore National Laboratory,2006.
[18] 吴轶,何铭基,杨春,等. 基于增量动力分析的带耗能腋撑钢筋混凝土转换结构抗震性能评估[J]. 地震工程与工程振动,2010,05:72-79.
[19] 何铭基. 带转换高层框架结构基于变形和损伤的抗震性能评估方法研究[D].广州:华南理工大学,2013.
[20] LUCO N,CORNELL C A. Effects of connection fractures on SMRF seismic drift demands[J]. Journal of Structural Engineering,2000,126(1):127-136.