您现在的位置:建筑结构>> 期 刊>> 2013年>> 第22期>>正文内容
海底隧道不同地质条件的耦合响应分析*
吴占瑞1, 漆泰岳2, 李斌2, 刘江峰2
摘 要

 

(1 中铁十一局集团有限公司, 武汉 4300612 西南交通大学交通隧道工程教育部重点实验室,成都 610031)
 
[摘要]为了研究富水断层等复杂地质条件对海底隧道围岩的影响,以青岛胶州湾海底隧道为工程背景,采用三维有限差分软件FLAC3D建立三维数值模型对海底隧道不同地质条件下的耦合响应进行计算分析,同时选取典型地段,利用现场实测数据和数值计算结果进行相互验证。分析结果表明,断层对海底隧道围岩的影响相对较小,而水的影响则要大的多,尤其是在断层与地下水耦合的情况下,有可能导致隧道洞周失稳。地下水的存在会极大地影响隧道的稳定,而当围岩条件又较差时,掌子面及开挖未及时支护段极易失稳破坏。在富水断层破碎带中,相对于隧道的衬砌安全和洞周的稳定,掌子面更容易失稳,掌子面的稳定是控制隧道稳定的关键因素。
[关键词]海底隧道; 富水断层; 耦合响应; 数值分析
中图分类号:U452  文献标识码:文章编号:1002-848X(2013)22-0091-05
 
Coupling response analysis of different geological conditions of the subsea tunnel
Wu Zhanrui1, Qi Taiyue2, Li Bin2, Liu Jiangfeng2
(1 China Railway 11th Bureau Group Co., Ltd., Wuhan 430061, China; 2 MOE Key Laboratory of
Transportation Tunnel Engineering, Southwest Jiaotong University, Chengdu 610031, China)
 
Abstract: In order to analyze the effect of the water-rich fault of complicated geological conditions on the surrounding rock of the subsea tunnel (taking the subsea tunnel that locates in Qingdao Jiaozhou Bay for an example), numerical simulation for the coupling response in different geological conditions of subsea tunnel was made by three-dimension finite difference software FLAC3D, and the calculation results were mutually verified with the experimental data measured in typical engineering area. The analysis results indicate that the effect of the water on the surrainding rock of the subsea tunnel is much higher than the fault, especially in the conditions that the fault couples with the ground water, which could lead to instability of the surrounding rock. The existence of the ground water greatly affects the stability of subsea tunnel and it is prone to cause unstable failure in the tunnel face and not timely supported segment when the conditions of the surrounding rock are poor. In water-rich zone of fault fracture, the tunnel face is easier to suffer instability than that of the lining and surrounding rock around the tunnel. The stability of tunnel face is the key factor to control the stability of the tunnel.
Keywords: subsea tunnel; water-rich fault; coupling response; numerical analysis
*国家自然科学基金项目(51278423),中央高校基本科研业务费专项资金资助(WSJTU11ZT33),教育部创新团队发展计划资助(IRT0955)。
 
作者简介:吴占瑞,博士研究生, Email: wuzhanrui@126.com
 
参考文献
1]李鹏飞,张顶立,周烨.隧道涌水量的预测方法及影响因素研究[J.北京交通大学学报:自然科学版, 2010,34(4):11-15.
2]李兵,张顶立,房倩,.海底隧道建设全过程核心安全风险分析[J.北京工业大学学报:自然科学版,2010,36(4):463-468.
3ARILD PALMSTROM. The challenge of subsea tunnelling J.Tunnelling and Underground Space Technology, 1994, 9(2):145-150.
4TOR GEIR ESPEDAL, GUNNAR NAERUM. Norway's rennfast link: the world's longest and deepest subsea road tunnel J.Tunnelling and Underground Space Technology, 1994, 9(2):159-164.
5]汪磊,李涛.海底隧道穿越断层破碎带预注浆加固稳定性分析[J.郑州大学学报:自然科学版,2010,31(6):73-77.
6]罗利锐,刘志刚,陈文涛,.红外探测技术在海底隧道地质预报中的应用[J. 地下空间与工程学报,2010,6(4):775-780.
7]李廷春,李术才,陈卫忠,. 厦门海底隧道的流固耦合分析[J.岩土工程学报,2004,26(3):397-401.
8TB 101212007铁路隧道监控量测技术规程[S. 北京:中国铁道出版社,2008.
下载地址

    你还没注册?或者没有登录?这篇论文要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!