支管轴力和弯矩联合作用下T形圆钢管相贯节点热点应力分析与计算*
- 摘 要
-
(1 湖南大学土木工程学院钢结构研究所, 长沙 410082;2 中南林业科技大学土木工程与力学学院,长沙 410004;3 湖南科技大学土木工程学院,湘潭 411201)[摘要]支管荷载形式对节点的应力集中系数影响很大,利用ANSYS有限元程序模拟了T形圆钢管相贯节点在三种基本荷载(支管轴力、平面内弯矩以及平面外弯矩)单独作用下的热点应力分布曲线以及应力集中系数,分析结果与试验结果、文献公式计算结果进行了对比,结果吻合良好,表明该模型较为精确地模拟了T形节点的应力分布。进而利用该模型研究了T形圆钢管相贯节点在基本荷载及其不同联合荷载作用时的热点应力分布情况,获得了最大热点应力及其分布位置,分析同时考虑了无量纲几何参数对最大热点应力的影响。在API规范公式的基础上,提出了计算最大热点应力的修正公式,按修正计算式计算得到的值与有限元分析结果吻合良好,且具有较好的适用性。[关键词]T形圆钢管相贯节点; 应力集中系数; 有限元分析中图分类号:TU391.3,TU392.3文献标识码:A文章编号:1002-848X(2013)22-0026-07Hot spot stress analysis of CHS T-joint under combined loadsYao Yao1, Shu Xingping1, Yuan Zhishen1,2, Lu Beirong1,3(1 Steel Structural Institute of Civil Engineering College, Hunan University, Changsha 410082, China; 2 College of Civil Engineering and Mechanics, Central South University of Forestry and Technology, Changsha 410004, China; 3 College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)Abstract: Loading forms on brace have great effect on the stress concentration factor (SCF) of the joints. ANSYS program was used to simulate the stress distribution of CHS T-joint under three kinds of basic load, respectively. Hot spot stress (HSS) distribution curve and SCF were obtained. Comparisons between analysis and test, the formula of reference were made which show good agreement and confirm the accuracy of the ANSYS model. Taking the geometrical parameters into account, further analysis was made to investigate the HSS distribution of T-joint under different combinations of basic load. The maximum HSS and its location were obtained. Finally, the formula of the maximum HSS was revised based on the API code formulae. The maximum HSS calculated by the revised formula agrees with ANSYS results.Keywords: CHS T-joint; stress concentration factor; FEA*国家自然科学基金项目(50978089,50748029),湖南省自然科学基金重点项目(09JJ3102)。作者简介:姚尧,博士研究生,Email:vincent1893@163.com。参考文献[1]YEOH S K, SOH A K, SOH C K. Behaviour of tubular T-joint subjected to combined loadings [J]. Journal of Constructional Steel Research, 1995, 32(1): 259-280.[2]KUANG J G, POTVIN A B, LEICK R D. Stress concentration in tubular joints [C]//Proceedings of the 7th Annual Offshore Technology Conference. Houston, 1975: 593-612.[3]EFTHYMIOU M, DURKIN S. Stress concentrations in T/Y and gap/overlap K-joints [C]//Proceedings of the 4th International Conference on Behaviour of Offshore Structures. Amsterdam, 1985: 429-440.[4]HELLIER A K, CONNOLLY M P, DOVER W D. Stress concentration factors for tubular Y-and T-joints[J]. International Journal of Fatigue, 1990, 12(1): 13-23.[5]HELLIER A K, CONNOLLY M P, KARE R.F, et al. Prediction of the stress distribution in tubular Y-and T-joints[J]. International Journal of Fatigue, 1990, 12(1): 25-33.[6]SMEDLEY G P, FISHER P. Stress concentration factors for simple tubular joints [C]//1st International Offshore and Polar Engineering Conference. Edinburgh, 1991: 475-483.[7]ZHAO X L, HERION S, PACKER J A, et al. Design guide for circular and rectangular hollow section welded joints under fatigue loading, CIDECT series ‘Construction with hollow sections’ No. 8[M].Germany: TUV-Verlag, Koln, 2001.[8] EN 1993-1-8: 2005 Eurocode 3: Design of steel structures-Part 1-8: Design of joints[S]. Brussels: European Committee for Standardization, 2005.[9]ANSI/AISC 36-10 Specification for structural steel buildings[S]. Chicago:American Institute of Steel Construction, 2010.[10]GB 50017—2003钢结构设计规范[S]. 北京:中国计划出版社,2003.[11]API RP 2A, Suppl. 3. Recommended practice for planning, designing and constructing fixed offshore platforms: Working stress design[S]. Dallas: American Petroleum Institute, 2007.[12]王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社,2007: 367.